
Event
Sourcing at
Studyflow.nl

Joost
Diepenmaat

Who & what

Event
Sourcing
intro

Event
Sourcing
architecture

How did we
get here?

How do we
use it

Experiences

Wrapping up

Event Sourcing at Studyflow.nl

Joost Diepenmaat

February 11, 2015



Event
Sourcing at
Studyflow.nl

Joost
Diepenmaat

Who & what

Event
Sourcing
intro

Event
Sourcing
architecture

How did we
get here?

How do we
use it

Experiences

Wrapping up

Who am I

• Joost Diepenmaat
• Last 5 years have been focused on Clojure
• Technical lead @ studyflow.nl
• @ZeekatSoftware



Event
Sourcing at
Studyflow.nl

Joost
Diepenmaat

Who & what

Event
Sourcing
intro

Event
Sourcing
architecture

How did we
get here?

How do we
use it

Experiences

Wrapping up

Studyflow

• http://www.studyflow.nl
• Secondary education platform
• Currently providing math courses for over 100 schools

http://www.studyflow.nl


Event
Sourcing at
Studyflow.nl

Joost
Diepenmaat

Who & what

Event
Sourcing
intro

Event
Sourcing
architecture

How did we
get here?

How do we
use it

Experiences

Wrapping up

What’s in the talk

• What is Event Sourcing
• How we implemented it with Rill
• Our experiences
• Rill implementation details are secondary

• Maybe for another talk
• Source code for core library is public



Event
Sourcing at
Studyflow.nl

Joost
Diepenmaat

Who & what

Event
Sourcing
intro

Event
Sourcing
architecture

How did we
get here?

How do we
use it

Experiences

Wrapping up

Event sourcing as a concept

• CQRS: writes have different needs from reads (queries)
• Domain Events as system of record / source of truth
• Event Store: append only event streams, read in
chronological order

Write Side Event Store Read Side



Event
Sourcing at
Studyflow.nl

Joost
Diepenmaat

Who & what

Event
Sourcing
intro

Event
Sourcing
architecture

How did we
get here?

How do we
use it

Experiences

Wrapping up

Example: Quiz

• You get assigned a random question
• If you answer correctly, you get shown a message and you
can go to the next question

• If you provide a wrong answer, get shown a message and
you have to start over

• If you answer 3 questions in a row correctly, you pass



Event
Sourcing at
Studyflow.nl

Joost
Diepenmaat

Who & what

Event
Sourcing
intro

Event
Sourcing
architecture

How did we
get here?

How do we
use it

Experiences

Wrapping up

Quiz flow chart

Start

OpenQuestion1

Question Assigned

GoodMessage1

Answered Correctly

FailMessage

Answered Incorrectly

OpenQuestion2

Question Assigned

Answered Incorrectly

GoodMessage2

Answered Correctly Question Assigned

OpenQuestion3

Question Assigned

Answered Incorrectly

Passed

Answered Correctly



Event
Sourcing at
Studyflow.nl

Joost
Diepenmaat

Who & what

Event
Sourcing
intro

Event
Sourcing
architecture

How did we
get here?

How do we
use it

Experiences

Wrapping up

The CRUD strawman

{:user-id 1
:question-id 23
:answer-state :correct ; or nil or :incorrect
:question-number 2}



Event
Sourcing at
Studyflow.nl

Joost
Diepenmaat

Who & what

Event
Sourcing
intro

Event
Sourcing
architecture

How did we
get here?

How do we
use it

Experiences

Wrapping up

What did we lose there?

• Timing: when did user 1 try to answer questions?
• Which questions did user 1 answer?
• How many times did user 1 make a mistake?
• Which mistakes?
• Which questions in our database are difficult?
• What kind of mistakes do users make answering question
45?

• Maybe more stuff that we will think up in a few months



Event
Sourcing at
Studyflow.nl

Joost
Diepenmaat

Who & what

Event
Sourcing
intro

Event
Sourcing
architecture

How did we
get here?

How do we
use it

Experiences

Wrapping up

Back to the flow chart

Start

OpenQuestion1

Question Assigned

GoodMessage1

Answered Correctly

FailMessage

Answered Incorrectly

OpenQuestion2

Question Assigned

Answered Incorrectly

GoodMessage2

Answered Correctly Question Assigned

OpenQuestion3

Question Assigned

Answered Incorrectly

Passed

Answered Correctly

What if we store all of these transitions?



Event
Sourcing at
Studyflow.nl

Joost
Diepenmaat

Who & what

Event
Sourcing
intro

Event
Sourcing
architecture

How did we
get here?

How do we
use it

Experiences

Wrapping up

Example Domain Event

{:rill.message/type
:quiz/QuestionAnsweredCorrectly,
:rill.message/timestamp
#inst "2015-02-11T11:46:55.014-00:00",
:rill.message/id
#uuid "276de24f-d7df-478c-a82a-fd97c24a7232",
:answer "My Answer",
:question-id 442,
:user-id 23}



Event
Sourcing at
Studyflow.nl

Joost
Diepenmaat

Who & what

Event
Sourcing
intro

Event
Sourcing
architecture

How did we
get here?

How do we
use it

Experiences

Wrapping up

Domain Events

• From Domain Driven Design (DDD)
• Record of a thing that did happen
• Has meaning in the domain
• Records intent of change
• Does not change or disappear
• Past tense



Event
Sourcing at
Studyflow.nl

Joost
Diepenmaat

Who & what

Event
Sourcing
intro

Event
Sourcing
architecture

How did we
get here?

How do we
use it

Experiences

Wrapping up

Our service

• Used by about 25000 students
• Answering 1.2 million questions a month
• Over 5 million domain events per month



Event
Sourcing at
Studyflow.nl

Joost
Diepenmaat

Who & what

Event
Sourcing
intro

Event
Sourcing
architecture

How did we
get here?

How do we
use it

Experiences

Wrapping up

Outline

AggregatesEvents
Generate

Update

Read model

Update

Views

Update

User
Browses

Commands

Orders

Apply to



Event
Sourcing at
Studyflow.nl

Joost
Diepenmaat

Who & what

Event
Sourcing
intro

Event
Sourcing
architecture

How did we
get here?

How do we
use it

Experiences

Wrapping up

Event sourcing mechanics

• The write side state is composed of aggregates
• Commands apply to aggregates to generate events
• Events apply to aggregates to update state
• The read model is generated/updated asynchronously from
published events



Event
Sourcing at
Studyflow.nl

Joost
Diepenmaat

Who & what

Event
Sourcing
intro

Event
Sourcing
architecture

How did we
get here?

How do we
use it

Experiences

Wrapping up

Commands & Events

• Commands either succeed and generate events, or they fail
• Events cannnot fail since you cannot change the past
• Commands are requests, so imperative: "AnswerQuestion!"
• Events are in the past tense: "QuestionAnsweredCorrectly"



Event
Sourcing at
Studyflow.nl

Joost
Diepenmaat

Who & what

Event
Sourcing
intro

Event
Sourcing
architecture

How did we
get here?

How do we
use it

Experiences

Wrapping up

Data flow

Write Model

AnswerQuestion(A)

RevealAnswer(A)

...

Quiz A

AnsweredCorrectly(A)

AnswerRevealed(A)

...

AnswerRevealed(C)

AnsweredCorrectly(A)

AnsweredCorrectly(B)

...

AnswerQuestion(B)

AnswerQuestion(B)

...

Quiz B

AnsweredCorrectly(B)

QuestionAssigned(B)

...

RevealAnswer(C)

...

Quiz C

AnswerRevealed(C)

QuestionAssigned(C)

...

Read Model (queries) Side effects



Event
Sourcing at
Studyflow.nl

Joost
Diepenmaat

Who & what

Event
Sourcing
intro

Event
Sourcing
architecture

How did we
get here?

How do we
use it

Experiences

Wrapping up

Why do we use Event Sourcing?

ES architecture matches our core use cases

• track student actions & intents; quite a lot of writes
• potentially complicated reporting
• naturally maps to "real time" event reporting

Advantages

• Simple concepts
• Easily scalable
• One way flow of information
• Queueing, Retrying, Conflict handling..



Event
Sourcing at
Studyflow.nl

Joost
Diepenmaat

Who & what

Event
Sourcing
intro

Event
Sourcing
architecture

How did we
get here?

How do we
use it

Experiences

Wrapping up

Core ideas match Clojure’s / FP
pretty well

• Immutability
• Aggregates as reductions
• Events & Commands are data
• Append-only data store



Event
Sourcing at
Studyflow.nl

Joost
Diepenmaat

Who & what

Event
Sourcing
intro

Event
Sourcing
architecture

How did we
get here?

How do we
use it

Experiences

Wrapping up

Technologies we currently use

Clojure web app (ring, hiccup etc)

• Authentication system
• Administration & Teacher front end

Om / Reagent

• Student applications

Ruby on Rails

• Publication & content editing service

Hooked together using event streams



Event
Sourcing at
Studyflow.nl

Joost
Diepenmaat

Who & what

Event
Sourcing
intro

Event
Sourcing
architecture

How did we
get here?

How do we
use it

Experiences

Wrapping up

Rill Event Sourcing

• Clojure Event Sourcing toolkit/library
• Developed in house
• EPL license
• Using Postgres as the durable store
• Event Store uses subset of the geteventstore.com
functionality

• https://github.com/rill-event-sourcing/

https://github.com/rill-event-sourcing/


Event
Sourcing at
Studyflow.nl

Joost
Diepenmaat

Who & what

Event
Sourcing
intro

Event
Sourcing
architecture

How did we
get here?

How do we
use it

Experiences

Wrapping up

Rill Concepts

• Aggregates are reductions of event streams
(ns rill.aggregate

(:require [rill.message :as message]))

(defmulti handle-event
"Take an event and return the new

state of the aggregate"
(fn [aggregate event]

(message/type event)))

(defn update-aggregate
[aggregate events]
(reduce handle-event aggregate events))



Event
Sourcing at
Studyflow.nl

Joost
Diepenmaat

Who & what

Event
Sourcing
intro

Event
Sourcing
architecture

How did we
get here?

How do we
use it

Experiences

Wrapping up

Messages are data

• Commands and events are maps
• Prismatic’s Schema for validation & documentation



Event
Sourcing at
Studyflow.nl

Joost
Diepenmaat

Who & what

Event
Sourcing
intro

Event
Sourcing
architecture

How did we
get here?

How do we
use it

Experiences

Wrapping up

Example definition

(defevent QuestionAnsweredIncorrectly
:course-id m/Id
:chapter-id m/Id
:student-id m/Id
:question-id m/Id
:inputs {m/FieldName s/Str}
chapter-quiz-id)



Event
Sourcing at
Studyflow.nl

Joost
Diepenmaat

Who & what

Event
Sourcing
intro

Event
Sourcing
architecture

How did we
get here?

How do we
use it

Experiences

Wrapping up

Example event

{:rill.message/number 2,
:rill.message/timestamp
#inst "2015-02-10T15:19:39.827-00:00",
:rill.message/id
#uuid "6f3d10d6-0aac-4ecc-b8c1-a6c297e10c6b",
:rill.message/type
:chapter-quiz/QuestionAnsweredIncorrectly,
:inputs {"_INPUT_1_" "2",

"_INPUT_2_" "0"},
:question-id
#uuid "24f80676-6d1c-4a31-906b-533878270a9b",
:student-id
#uuid "2b45e104-821e-4f73-aa15-a5109267214c",
:chapter-id
#uuid "1e8d8c4b-0581-4400-bd7d-a66d0500621e"}



Event
Sourcing at
Studyflow.nl

Joost
Diepenmaat

Who & what

Event
Sourcing
intro

Event
Sourcing
architecture

How did we
get here?

How do we
use it

Experiences

Wrapping up

Handling async/eventual
consistency

Show user the effect of their actions now

• Other user’s effect may be propagated slowly
• Command execution returns generated events/number

Standard web pages

• Execute command, redirect to view
• View blocks (refreshes) until event/number is seen

ClojureScript apps

• Execute command, return generated events
• Temporarily refresh global app state



Event
Sourcing at
Studyflow.nl

Joost
Diepenmaat

Who & what

Event
Sourcing
intro

Event
Sourcing
architecture

How did we
get here?

How do we
use it

Experiences

Wrapping up

ClojureScript frontend

• Domain Events are a nice synchronization medium
• SPAs need to deal with eventual consistency
• ClojureScript works nice enough
• Move part of the read-model / querying to the client
• Keep command handling on the server



Event
Sourcing at
Studyflow.nl

Joost
Diepenmaat

Who & what

Event
Sourcing
intro

Event
Sourcing
architecture

How did we
get here?

How do we
use it

Experiences

Wrapping up

Experiences

• What works well
• What needs attention



Event
Sourcing at
Studyflow.nl

Joost
Diepenmaat

Who & what

Event
Sourcing
intro

Event
Sourcing
architecture

How did we
get here?

How do we
use it

Experiences

Wrapping up

Testing is straightforward

• It’s all data!
• Use in-memory store for command and integration tests
• Use plain events for unit testing read-side



Event
Sourcing at
Studyflow.nl

Joost
Diepenmaat

Who & what

Event
Sourcing
intro

Event
Sourcing
architecture

How did we
get here?

How do we
use it

Experiences

Wrapping up

Testing commands example

(def initial [fixture/course-published-event
(events/started chapter-id student-id)
(events/question-assigned
chapter-id student-id question-id)])

(def expected [(events/question-answered-correctly
chapter-id student-id question-id
inputs)

(events/question-assigned
chapter-id student-id question-2-id)])

(def command (chapter-quiz/submit-answer!
course-id chapter-id student-id
question-id 1 inputs))

(is (command-result= [:ok expected]
(execute command initial)))



Event
Sourcing at
Studyflow.nl

Joost
Diepenmaat

Who & what

Event
Sourcing
intro

Event
Sourcing
architecture

How did we
get here?

How do we
use it

Experiences

Wrapping up

Server performance is great

• Average < 15 ms response time for our busiest application
• Slowest write < 30 ms
• Slowest read < 100 ms (can be improved)



Event
Sourcing at
Studyflow.nl

Joost
Diepenmaat

Who & what

Event
Sourcing
intro

Event
Sourcing
architecture

How did we
get here?

How do we
use it

Experiences

Wrapping up

Write logic is constrained

• The system of record and its state is relatively easy to
understand

• Things that do go wrong tend to stand out
• Determining aggregate roots is important



Event
Sourcing at
Studyflow.nl

Joost
Diepenmaat

Who & what

Event
Sourcing
intro

Event
Sourcing
architecture

How did we
get here?

How do we
use it

Experiences

Wrapping up

You can trust an append-only event
stream

• You almost never need to modify written events
• Bugs in the read side of the system have less impact on the
write side

• Since you track what’s going on you can recover better
from bugs

• It’s really hard to lose data
• Data-pollution tends to come from runaway processes
generating too many events



Event
Sourcing at
Studyflow.nl

Joost
Diepenmaat

Who & what

Event
Sourcing
intro

Event
Sourcing
architecture

How did we
get here?

How do we
use it

Experiences

Wrapping up

Multiple views of the same
aggregate

• Command view
• Query views
• Front end view for stateful clients

Some of this can possibly be made easier/automated
Some of this is inherent to the CQRS split

• commands need few narrow, shallow aggregates
• queries and views want wide and deep data



Event
Sourcing at
Studyflow.nl

Joost
Diepenmaat

Who & what

Event
Sourcing
intro

Event
Sourcing
architecture

How did we
get here?

How do we
use it

Experiences

Wrapping up

Building & adjusting read models

• We use in-memory (non-durable) read models for
everything

• Usually straightforward to implement
• Boring & easy to make mistakes (which events apply to
this view?)

• Makes deployment slow

Partial performance fixes:
• Sharding & Filtering
• Caching / durable read model



Event
Sourcing at
Studyflow.nl

Joost
Diepenmaat

Who & what

Event
Sourcing
intro

Event
Sourcing
architecture

How did we
get here?

How do we
use it

Experiences

Wrapping up

Recommended references

• http://docs.geteventstore.com/
• "Event Sourcing Pattern" on MSDN
• "Domain Driven Design" E. Evans
• "Implementing Domain-Driven Design" V. Vernon
• "Patterns of Enterprise Application Architecture" M.
Fowler et. al.

http://docs.geteventstore.com/


Event
Sourcing at
Studyflow.nl

Joost
Diepenmaat

Who & what

Event
Sourcing
intro

Event
Sourcing
architecture

How did we
get here?

How do we
use it

Experiences

Wrapping up

Contact

Rill https://github.com/rill-event-sourcing/
Studyflow https://www.studyflow.nl/

Email joost@studyflow.nl joost@zeekat.nl
Twitter @ZeekatSoftware

We love to talk to you if you’re interested in using Rill!

Thanks!
Davide Taviani, Gijs Stuurman, Remco van t Veer, Steven
Thonus & Edo van Royen.

https://github.com/rill-event-sourcing/
https://www.studyflow.nl/

	Who & what
	Event Sourcing intro
	Event Sourcing architecture
	How did we get here?
	How do we use it
	Experiences
	Wrapping up

